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SYNOPSIS 

Airbag technology relies on woven fabrics as the material of construction and particularly 
on knowledge pertaining to the fabric's permeability as a function of pressure drop, inflation 
temperature of the gas, fabric weave, fiber denier, and biaxial stress-strain relationships 
under biaxial conditions. While fabric permeability can be quantified by actual experimental 
measurements, the number and nonlinearity of the variables involved make the experiments 
time- and cost-intensive. Moreover, interpolations within a given data set can yield ques- 
tionable results. In this study, a very simple feed forward neural network architecture was 
used with a training rule involving a nonlinear optimization routine for updating weights 
of the proposed network. This training was compared to the training with an error-back 
propagation routine. During this training, the ANN is introduced to data that contain the 
actual cause and effect patterns, with adjustments being made by changes in weighting 
factors until the errors in the output variables are minimized. Once trained, ANN can 
ascertain the essentials of the relationships and assimilate henceforth. In this study, after 
the initial training, the ANN was tested on additional data which were not part of the 
training processes. The predictions of the proposed trained network agreed very well with 
the new experimental data. On this basis, the proposed ANN model appears to be an 
effective tool for modeling airbag fabric behavior. This ANN model can assimilate rela- 
tionships between different variables from the real-world data and does not require extensive 
normalizing of the process data like a back-propagation algorithm. Once trained, only 
fractions of a second are needed for information assimilation and output generation. This 
coupled with simplicity of use and accuracy of predictions from the real-world data make 
this ANN model attractive for on-line applications. C 1995 John Wiley & Sons, Inc. 

I NTRODUCTIO N 

Airbag fabrics undergo biaxial stretching during de- 
ployment. But the performance of these fabrics un- 
der these conditions has not been widely reported 
in the literature. An expansible fabric, stretched 
biaxially, will open up and become more permeable. 
The extent to which this openness changes with 
temperature, pressure drop, fabric weave, and fabric 
denier is difficult to determine a priori. Moreover, 
in the third generation of airbags known as "smart- 
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bags," the energy dissipation relies primarily on 
permeability through the fabric rather than on vents. 
In this regard, the material properties of the fabric 
can significantly contribute to the safety of the ve- 
hicle occupant as he or she interacts with the de- 
ployed airbag, The two properties that contribute 
to the energy-absorbing capabilities of the fabric bag 
are its permeability and its biaxial stress-strain 
characteristics in the plane of the fabric.'-3 

The most obvious feature of fabrics is that they 
have almost no bending strength and, hence, exhibit 
an inability to support compressive loads in the 
plane of the fabric. This inability to support com- 
pressive loads introduces a strong nonlinearity into 
any attempt to approximate a fabric as an isotropic 
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Figure 1 Schematic of a feed forward neural network architecture. 

or orthotropic continua. The initial unidirectional 
fiber resistance is attributed to the resistance en- 
countered during the straightening of the threads. 

This resistance arises from the flexural rigidity of 
the threads under tension, while the threads in the 
transverse direction are forced to  become more un- 
dulated by the process. An additional complicating 
factor is that the fibers which make UD a fabric also 

output signal 'S' 
to other nodes 

Inputs from other nodes 

Figure 2 Anatomy of a typical neuron. 

interact in a complex manner which deviates con- 
siderably from continuum behavior. Under uniaxial 
tension, most of the nonlinear response is due to  
the kinematic interaction between the warp and weft 
threads and their undulation in the unstressed state. 
However, these effects are greatly reduced under 
biaxial tensile  condition^.^ 

The purpose of this article was to demonstrate 
how a simple neural network approach was used to  
model complex physical behavior of airbag fabrics. 
The major variables are fiber denier, fabric weave, 

Table I Physical Characteristics of Test Fabrics 

Fabric Denier Weave Count Weave Type/Process 

315 60 X 60 Plain 
420 49 x 49 Fancy 
630 41 X 41 Plain 
840 32 X 32 Ripstop 
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Figure 3 Schematic of the blister-inflation apparatus. 
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Figure 4 
drop experiments. 

Permeability isobars for the 315-denier nylon 66 fabric in the low-pressure- 
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Figure 5 
drop experiments. 

Permeability isobars for the 420-denier nylon 66 fabric in the low-pressure- 

weave count, inflation temperature, and permeabil- 
ity for a given pressure drop. 

biaxial stress and strain in distended fabrics is based 
on the relationships derived by Denson and co- 
workers for solid plastic In both instances, 
biaxial tensile stress is calculated by the following 

THEORY equation: 

Blister-inflation Technique 

stretching and viscous air flow through the fabric 
or vents in the fabric are the two by 
which energy is adsorbedby a deployed smart-airbag. 
Both of these mechanisms, fiber stretching and air- 
flow through the fabric, were quantified using a blis- 
ter-inflation technique in our earlier investigations.' 

With respect to fiber stretching, the approach 
Tock and Nusholtz'.' used for the calculation of the 

CTb = ~ 4(x)3 + 2(x) + - 
As mentioned earlier, inelastic /elastic fiber pD do [ (:j(:j] 

The amount of biaxial strain is given by the follow- 
ing equation: 

&b = ln[{cos-l (i $$j] [x + (ij(:j]] (2) 



NEURAL NETWORK MODEL FOR NYLON 66 FABRICS 1131 

280 300 320 340 360 380 

a 3.4 kPa 

6.8 kPa 

0 10.3 kPa 

+ 13.7 kPa 

17.2 kPa 

20.6 kPa 

A 24.1 kPa 

k l  27.5 kPa 

31.0 kPa 

+ 34.4 kPa 

48.2 kPa 

X 62.0 kPa 

Temperature (K) 
Figure 6 
drop experiments. 

Permeability isobars for the 630-denier nylon 66 fabric in the low-pressure- 

In these equations, the variables in SI units are ffb 

= biaxial tensile stress in the fabric, Pa; P = pressure 
drop across the fabric, Pa; do = the original fabric 
thickness, m; x = dimensional less ratio of (h /D) ;  h 
= height of the blister, m; D = blister diameter, m; 
and cb = biaxial strain in the fabric. Equations (1) 
and (2) were derived based on the assumption that 
a constant volume of the polymer sheet deforms 
from a flat configuration into a spherical segment 
during the blister-inflation experiments. This same 
assumption applies to the woven fabric samples used 
in this study. 

Neural Networks 

formation channels called interconnections. Neural 
nets can identify and learn correlative patterns be- 
tween sets of input data and corresponding target 
values. Once trained, neural nets can be used to 
forecast the outputs expected for new levels of input 
variables. Each neuron can have multiple inputs, 
but only one output. Each output, however, branches 
out to input to many other neurons. The neurons 
operate collectively and simultaneously on most or 
all data and are configured in regular architecture. 
They “learn” by extracting preexisting information 
from the data that describe the relationship between 
the inputs and the outputs. Hence, in the learning 
process, the network actually acquires knowledge or 
information from the environment. As a result of 

Neural networks are constructed of processing ele- 
ments known as neurons that are connected via in- 

the interrelationships, the network assimilates in- 
formation that can be recalled later. Neural net- 
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Figure 7 
drop experiments. 

Permeability isobars for the 840-denier nylon 66 fabric in the low-pressure- 

works which are capable of handling complex and 
nonlinear problems can process information rapidly 
and can reduce the engineering effort required in 
developing highly computation-intensive modeling, 
such as nonlinear FEA. Neural networks also come 
in a variety of types, and each have their distinct 
architectural differences and uses." 

The structure of neural nets forms the basis for 
information storage and governs the learning pro- 
cess. The type of neural network used in this work 
is known as a feed forward network in which a non- 
linear optimization method was used to estimate the 
strength of each connection, i.e., weights. The train- 
ing achieved through this technique was then com- 
pared to a back-propagation training which has for- 
ward flowing information in the prediction mode and 

back-propagated error correction in the training 
mode. Hence, the information flows only in the for- 
ward direction, i.e., from input to output in th? test- 
ing mode. A general structure of a feed forward net- 
work is shown in Figure 1. Such connections are 
made between neurons of adjacent layers: A neuron 
is connected so that it receives signals from each 
neuron in the immediate preceding layer and trans- 
mits signals to each neuron in the immediate suc- 
ceeding layer. Neural networks which are organized 
in layers typically consist of a t  least three layers: an 
input layer, one or more hidden layers, and an output 
layer. The input and output layers serve as interfaces 
which perform an appropriate scaling relationship 
between the actual and the network data. Hidden 
layers are so termed because their neurons are hid- 
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Figure 8 
drop experiments. 

Permeability isobars for the 315-denier nylon 66 fabric in the high-pressure- 

den from the actual data. The connections are the 
means for information flow. Each connection has 
an associated weight factor, w i ,  expressed by a nu- 
merical value which can be adjusted. The weight is 
an indication of the connection strength between 
two neurons. 

The neurons in the hidden and output layers per- 
form summing and nonlinear mapping functions. 
The functions carried by each neuron are illustrated 
in Figure 2. Each neuron occupies a particular po- 
sition in a feed forward network and accepts inputs 
only from other neurons and sends its outputs to 
other neurons. The inputs from other nodes are first 
summed up. This summing of the weighted inputs 
is carried out by a processor within the neuron. The 
sum that is obtained is called the activation of the 

neuron. Each activated neuron performs three pri- 
mary functions: receives signals from other neurons, 
sums their signals, and transforms the sum. For ex- 
ample, if the output from the ith neuron with pattern 
p is designated as x L p ,  then the input to the j th neu- 
ron from the ith neuron is xLPwL,, .  Summing the 
weighted inputs to the j th neuron can be represented 
as 

where %, is a bias term and W B  is the weight of the 
connection from the bias neuron to the j th neuron. 
This activation can be positive, zero, or negative, 
because the synaptic weightings and the inputs can 
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Figure 9 
drop experiments. 

Permeability isobars for the 420-denier nylon 66 fabric in the high-pressure- 

be either positive or negative. Any weighted input 
that makes a positive contribution to activation 
represents a triggering or tendency to turn the neu- 
ron on. An input making a negative contribution 
represents an inhibition which tends to turn the 
neuron off. After summing its inputs to determine 
its activation, the summed total is then modified by 
a mapping function, also known as a transfer func- 
tion/threshold function. A transfer function com- 
monly used is the “sigmoid,” which is expressed as 

ically increasing function, where S,,p is the trans- 
formed output asymptotic to 0 I S,,p I 1 and ui,p is 
the summed total of the inputs (-rn 5 ui,p I +oc) 
for pattern p .  Hence, when the neural network is 
presented with a set of input data, each neuron sums 
up all the inputs modified by the corresponding con- 
nection weights and applies the transfer function to  
the summed total. This process is repeated until the 
network outputs are obtained. 

“Training” a Neural Network 

Once the network architecture is selected and the 
characteristics of the neurons and the initial 
weights are specified, the network has to be taught 
to  associate new patterns and new functional de- 

1 
(4) s. = 

’.’ [I + e x p ( - ~ ~ , ~ ) ]  

A sigmoid (s-shaped) is a continuous function that 
has a derivative a t  all the points and is a monoton- 
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drop experiments. 

Permeability isobars for the 630-denier nylon 66 fabric in the high-pressure- 

pendencies. Learning corresponds to  the adjust- 
ment of the  weights in order to  obtain satisfactory 
input-output mapping. Since neural networks do 
not use a priori information about the process to  
be modeled and learning is experimental, i t  is 
necessary to  have data which adequately repre- 
sent  the relationship between the  process input 
and output. 

Several different. learning rules have been pro- 
posed by various researchers," but the aim of ev- 
ery learning process is to  adjust the weights in 
order to minimize the error between the  network 
predicted output and the actual output. T h e  
output from each neuron i is Si ,p ,  as shown 
in eq. (4). 

Proposed ANN Training Routine 

A faster training process is to  search for the weights 
with the help of a optimization routine that mini- 
mizes the same objective function. The learning rule 
used in this work is common to a standard nonlinear 
optimization or least-squares technique. Moreover, 
the entire set of weights are adjusted at once instead 
of adjusting them sequentially from the output to  
the input layers. The weight adjustment was done 
a t  the end of each exposure of the entire training 
set to  the network, and the sum of squares of all 
errors for all patterns was used as the objective 
function for the optimization problem. A nonlinear 
optimization routine based on the Levenberg-Mar- 
quardt method" was used for solving the nonlinear 
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Figure 11 
drop experiments. 

Permeability isobars for the 840-denier nylon 66 fabric in the high-pressure- 

least-squares problem. The optimization problem 
can be defined if the model to be fitted to the data 
is written as follows: 

where al,  az, . . . , a,,, are independent variables, PI, 
P2, . . . , Pk are the population values of the k param- 
eter, and F ( y )  is the expected value of the indepen- 
dent variable y. Then, the data points can be denoted 
by 

The problem is to compute those estimates of the 
parameter which will minimize the following objec- 
tive function: 

where Yl is the value of y predicted by the model a t  
the ith data point. The parameters to be determined 
in our case are the strength of the connections, i.e., the 
weights, w,. More details of this Levenberg-Marquardt 
method can be found e1sewhere.l2 This algorithm shares 
with the gradient methods their ability to converge from 
an initial guess which may be outside the range of con- 
vergence of other methods. It shares with the Taylor 
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Biaxial stress-strain behavior of‘ nylon 66 fabrics in blister-inflation experi- 

series method the ability to close in on the converged 
values rapidly after the vicinity of the converged values 
have been reached. The optimization procedure updated 
weights at every connection and yielded rapid and ro- 
bust training. The weights were initialized to values in 
the range k O . 1  by random assignment. 

Standard Error-back-propagation Routine 

In a standard back-propagation scheme, updating 
of the weights is done iteratively. The weights for 

each connection are initially randomized when the 
neural network undergoes training. Then, the error 
between the target output and the network predicted 
output are back-propagated through the network. 
The back-propagation of error is used to update the 
connection weights. Repeated iterations of this op- 
eration results in a convergence to a set of connec- 
tion weights. 

The general principle behind most commonly 
used back-propagation learning methods is the 
“delta rule,” by which an objective function involv- 
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data at 281, 323, and 373 K. 

Neural network training of the permeability 

ing squares of the output errors from the network 
is minimized. The delta rule requires that the sig- 
moidal function used a t  each neuron be continuously 

differentiable. This method identifies an error as- 
sociated with each neuron for each iteration involv- 
ing a cause-effect pattern. Therefore, the error for 
each neuron in the output layer can be represented 
as 

where Ti,p is the desired target output for neuron i 
and pattern p ,  and j’ is the derivative of the sigmoidal 
function used for neuron i. The change in the weight 
of the connection between neuron i and neuron j is 
given by 

where p is the learning rate, a is the momentum 
factor, and n indexes the iteration. 

The error signal from the neurons in the output 
layer can be easily identified. This is not so for neu- 
rons in the hidden layers. Back-propagation over- 
comes this difficulty by propagating the error signal 
backward through the network. Hence, for the hid- 
den layers, the error signal is obtained by 

Experimental permeabilitg(m3[STPl/mZ/s) 

1 - Experimental data p ANN predictions 1 

i 

Figure 16 Neural network testing of the permeability data at 298 and 348 K. 
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Figure 17 Neural network training results for a back- 
propagation training routine with conjugate-gradient 
search. 

where j represents the neurons to  which neuron i in 
the hidden layer sends the output. Hence, the 
weights were updated as shown in eq. (9). 

Finally, any training is incomplete without proper 
validation of the trained model. Therefore, the 
trained network should be tested with data that i t  
has not seen. This procedure was followed in this 
study by first training the network on one data set 
and then testing it on a second different data set. 

EXPERIMENTAL 

Fabric Materials 

In this article, the performances of four different 
nylon 66 fabrics were studied. The effect of the den- 
ier of the fiber, weave count, inflating gas temper- 
ature, and pressure drop across the fabric, both in 
terms of permeability and biaxial stress-strain, were 
considered in the proposed neural network model. 
Traditionally, nylon 66 has been the material of 
choice for fabrics used in safety airbag construction. 
In addition to the good engineering properties of 
their constituent fibers, fabrics must be compatible 
with the design constraints required in the con- 
struction and performance of airbags. 
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I - Experimental data A" prediction 1 
~ ~~ 

Figure 18 
strain data. 

Neural network training of the biaxial stress- 
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Figure 19 
strain data. 

Neural network testing of the biaxial stress- 



NEURAL NETWORK MODEL FOR NYLON 66 FABRICS 1141 

The nylon 66 fabrics consisted of four different 
deniers, i.e., 315D, 420D, 630D, and, 840D. The 315D 
and 630D fabrics were a plain weave, while the 420D 
fabric and the 840D fabric had a fancy weave and a 
ripstop, respectively. Their respective weave counts 
are given in Table I. 

Blister-inflation technique 

The blister-inflation technique is a quasi-steady- 
state measurement in which a blister is created by 
a pressure drop across the fabric. The fabric is 
maintained in this distended shape while data on 
permeability and biaxial strain are re~orded.’.’~ 
These biaxial characteristics are important since 
they directly impact on the energy dissipation char- 
acteristics of the fabric used in smart-airbags. 
Moreover, the blister-inflation technique for mea- 
suring fabric permeability provides a convenient 
analog for stretching behavior which is very similar 
to that which the actual bag must undergo during 
deployment. When an expansible fabric is stretched 
biaxially by inflation into a spherical segment or 
“blister,” the fabric’s structure opens up and it be- 
comes more permeable, just as  the fabric in an airbag 
does when it is inflated. In this study, the perfor- 
mances of four different nylon 66 fabrics were ex- 
amined by blister inflation. 

Apparatus 

In this experiment, a flat sheet of test fabric was 
deformed into a blister with compressed A 
schematic diagram of the experimental apparatus is 
shown in Figure 3. The basic component of the ap- 
paratus is the sample-jig assembly. The sample jig 
itself consisted of two metal plates, both with a cen- 
tered, beveled hole of diameter, D = 0.075 m. The 
test fabric of thickness, do, was clamped between 
the plates which were then bolted together to form 
a tight seal a t  the edge of the hole. As shown, the 
compressed air which was used to form the blister 
passed through a pressure regulator, a manual valve, 
a Speedairem moisture trap, and a heat exchanger 
prior to  entering the blister-jig assembly. A pressure 
gauge, to determine, P,  was positioned in the line 
downstream of the moisture trap to  measure the dif- 
ferential pressure across the inflated fabric. The 
blister height, h, was measured manually. The vol- 
umetric flow rate of air passing through a given test 
fabric for a given differentia1 pressure drop was 
measured with a Taylor@ anemometer. The volu- 
metric flow was corrected to STP. 

RESULTS AND DISCUSSION 

Permeability Relationship 

When the experimental data were plotted as per- 
meability isotherms, the permeability of the four 
fabrics as a function of pressure drop remained linear 
over the entire pressure drop range of 0-200 kPa. 
However, a better insight into a fabric’s character- 
istics is obtained from studies of the variation of 
permeabilities with inflating gas temperature when 
the data are displayed as  permeability isobars. The 
pressure-drop range used in this study varied from 
3.4 to 200 kPa. The fabrics were tested a t  five dif- 
ferent isothermal temperatures: 281, 298, 323, 348, 
and 373 K. The experimental volumetric perme- 
ability data were corrected to STP for different 
pressure drops and temperature for all the experi- 
mental data. The temperature of the compressed air 
used for inflation was maintained with the use of a 
heat exchanger. The observed behaviors of different 
nylon fabrics are discussed under two separate sec- 
tions; (1) low (0-62 kPa) pressure-drop and (2) high 
(62-200 kPa) pressure-drop experiments. 

low-pressure-drop Experiments 

The 315D fabric was the only material that exhibited 
a positive increase in permeability when the tem- 
perature of the inflating gas was increased from 281 
to  323°C. This is shown in Figure 4. The perme- 
ability of this fabric a t  and below 298 K could not 
be detected in the blister-inflation apparatus until 
a pressure drop of 13.7 kPa was attained. A maxi- 
mum in permeability was observed around 323 K 
for the inflating gas. This peak became more obvious 
at  pressure drops exceeding 34.4 kPa. However, with 
further increases in temperature above the glass 
transition temperature, the permeability decreased 
drastically. This behavior of low-denier nylon fabrics 
around Tg was reported in earlier  publication^.^^^'^ 
We believe that with an increase in pressure and 
temperature above Tg the individual fiber bundles 
expand/swell and transform into an  elliptical cross 
section from their initial circular cross sections, thus 
resulting in increase in the cover factor of the fabric. 

The other three fabrics (420D, 630D, and 840D) 
exhibited decreasing permeabilities with increasing 
temperature of the inflating gas, as shown in Figures 
5-7. In the case of the 420D fabric, this decline was 
more pronounced a t  373 K. With an increase in 
temperature from 281 to 373 K, the permeability 
changed from 0.2 to  1.6 (m3{STPJ/m2/s) for pres- 
sure drops of 3.4 and 62.0 kPa, respectively. This 



1142 KESHAVARAJ, TOCK, AND NUSHOLTZ 

behavior of a 420D fabric with a plain weave was 
described elsewhere.6.'6 The 630D fabric exhibited 
permeability only a t  the extremes of temperatures 
for a 3.4 kPa pressure drop. This material exhibited 
a trough in its permeability isobars with a minimum 
near 343 K. The permeability of the 840D fabric a t  
a 3.4 kPa pressure drop was not detectable in the 
blister-inflation apparatus for temperatures below 
323°C. Otherwise, this fabric exhibited a decrease 
in permeability with an increase in the temperature. 
This behavior of the 840D fabric has been eluded to 
e1sewhere.l5 In general, the average permeability of 
the nylon fabrics increased with respect to temper- 
ature and pressure in the following order: 420D 
> 840D > 630D > 315D. In our experience, the 840D 
fabric was usually more permeable than was the 
420D fabric if the latter had a plain weave.lS The 
new fancy weave for the 420D fabric was highly per- 
meable over the expected temperature and pressure 
drop levels for the 420D fabric was highly permeable 
over the expected temperature and pressure drop 
levels for airbags. This may be then ideally suited 
for smart-airbag applications in which vents are not 
used. 

This measured decrease in permeability with in- 
creases in temperature of the inflating gas can in- 
troduce significant errors in models that do not in- 
corporate these effects. Also, when trying to reduce 
the response time of the initial peak in the pressure- 
time history of airbag deployment, the temperature 
level a t  which the fabric is exposed governs the level 
of energy dissipation. 

High-pressure-drop Experiments 

The behavior of the 315D fabric with an  increase in 
pressure drop from 62.0 to 200 kPa is shown in Fig- 
ure 8. The permeability of this fabric a t  temperatures 
below room temperatures, i.e., a t  281 K, was higher 
than the recorded permeability a t  room tempera- 
tures. This behavior creates a change in slope from 
positive to negative a t  higher pressure drops in this 
temperature range as reported in our earlier publi- 
c a t i o n ~ . ~ , ' ~  We believe that the low-denier fibers 
shrink with reduced temperatures and, hence, cause 
the stretched fabric to exhibit an  increase in open- 
ness. The distinctive permeability peaks around the 
glass transition temperatures, Tg, for nylons (323- 
353 K) were more pronounced a t  the higher-pressure 
drops. Once again, however, the permeability was 
observed to drop drastically following temperature 
increases above the Tg range. 

In the case of the 420D fabric, a much steeper 
decline in the slope of the permeability isobar was 

noticed with increases in temperature from 281 K 
to until around 323 K, as  shown in Figure 9. A small 
peak in permeability was observed in the glass tran- 
sition temperature range. But with further increases 
in temperature above T,, the permeability decreased. 
The 630D fabric exhibited a steady decline in its 
permeability isobar with increases in temperature 
(Fig. 10). The slope of this decline was greatest in 
the Tg region. The performance of the 840D ripstop 
fabric was similar to  its performance a t  the lower- 
pressure drops. A small permeability peak was ob- 
served within the glass transition temperature range 
when the pressure drop was above 131 kPa, as shown 
in Figure 11. The order of permeability remained 
the same for the higher-pressure-drop experiments. 

Biaxial Stress-Strain Relationship 

The biaxial stress-strain Characteristics of the four 
fabric samples were determined by the blister-infla- 
tion technique. This is a quasi-steady-state mea- 
surement in which the blister is created by a pressure 
drop across the fabric. This technique is more sen- 
sitive in the lower biaxial strain region, i.e., when cb 
= 2-4%. The biaxial stress-strain behavior as de- 
termined by the blister-inflation technique is shown 
in Figure 12 for all four fabrics. Results are presented 
in this article only for the room-temperature eval- 
uations. Temperature was not found to influence 
the biaxial stress-strain characteristics. All the ex- 
perimental data points are shown connected by a 
interpolated line. Based on this study, it would ap- 
pear that all the fabrics underwent some fiber re- 
alignment both as  the pressure drop approached 27 
kPa and again a t  higher-pressure drops depending 
on the type of the weave and fiber denier. A fit of 
the data representing biaxial stress-strain below a 
pressure drop of 34 kPa yielded a fabric flexural 
modulus of 2 X 10' kPa. This value is in the mid- 
range of the values reported in the literature for the 
flexural modulus for bulk nylon 66.16 

Based on Figure 12, the permeability order for 
the different nylons becomes apparent. Among the 
four nylons, the 840D fabric exhibited the steepest 
slope, indicating a greater fabric stiffness for this 
material. Hence, an overall stiffness (modulus) cor- 
relates with permeability and also with the fabric's 
ability to be folded into compact bundles. Moreover, 
the divergence in behavior between the two per- 
meability fabrics, i.e., 315D and 420D, a t  higher- 
pressure drops is indicative of the potential role that 
fiber movement with the yarn bundles can have on 
the fabric's openness as it is stretched biaxially. Fi- 
nally, it is important to note that the blister-inflation 
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technique does not produce rupture stress-strain 
levels. Therefore, as a comparison, the 315D fabric’s 
biaxial stress-strain performance obtained from 
ball-burst experiments is shown in Figure 13. 

Permeability Predictions by the Proposed Neural 
Network Model 

The main purpose of the study was to develop a 
model that can be used to  predict the changes in 
permeability with inflation temperature and pres- 
sure drop. The network used in the model was a 3- 

end of every epoch. Hence, the training was ex- 
tremely slow. Further, the routine uses a gradient- 
descent search, which is strongly a function of the 
initial guess, and the training achieved was not sat- 
isfactory. The proposed nonlinear optimization- 
based algorithm is not only very fast in converging, 
but it is very efficient for highly nonlinear problems 
like the one under consideration in this article. 

Biaxial Stress-Strain Predictions by Neural 
Network Model 

input node, 6-hidden node, l-output node (abbre- The experimental data in this instance were ran- 
domly separated into two data sets. The training 
data set consisted of 48 data points and the corre- 

The effects of the type of the fabric, i.e., fabric denier 

were considered as the input layers. The predicted 
variable was the biaxial stress of the fabric. However, 
since the change in the biaxial stress-strain rela- 
tionship with inflation temperature was not signif- 
icant, this effect was ignored in the model. The same 

used. The training and test results from the network 
model are shown in Figures 18 and 19. The model 
predictions were within a +1% error limit. 

viated as a 3-6-1 network) architecture. The  per- 
meability data were divided into two data sets: The 
training data set was at three temperature levels, sponding test data set consisted of 40 data points. 

2817 323, and 373 K. This ‘Overed the 
range Of Operating conditions for the 22 different and Weave type, pressure drop, and biaxial strain 
isobaric pressure drops. The second, or test, data set 
consisted of the permeabilities obtained a t  the other 
two temperature levels, namely, 298 and 348 K. 
These also covered all 22 different isobaric pressure- 
drop conditions. The fabric characteristics incor- 

denier, weave type), the inflation temperature, and 
the internal pressure drop. A schematic of the pro- 
posed neural network training routine is shown in 
Figure 14. All the four types of nylons were trained 

POrated in the were the fabric type (fabric 3-6-1 feed forward neural network architecture was 

and tested together with appropriate differentiation 
€or each. 

The training data set consisted of 264 perme- 
ability data points a t  three different inflation tem- 
perature levels (281,323, and 373 K) and 22 different 
pressure-drop levels over a pressure range of 3.4- 
200 kPa. The test data set to validate the model 
consisted of 176 permeability data points at two dif- 
ferent inflation temperature levels (298 and 348 K) 
and the same 22 pressure-drop levels. 

The training and testing results from the feed 
forward neural network model are shown in Figures 
15 and 16, respectively. The model predictions for 
permeability were within a ?lo% error limit. This 
agreement is very good considering the nature of 
this experiment, and, also, this level of error con- 
stitutes a relatively small level of energy dissipation 
by viscose flow through the ai~-bag.~ The training of 
the same data set with a back-propagation routine 
did not converge. Hence, the real-world data was 
normalized by a “Z-scaling” method, which removes 
the constant offset common in many real-world data 
sets. The normalized data were then trained with 
the back-propagation routine; the best possible 
training achieved for this data is shown in Figure 
17. The weights were adjusted by this method a t  the 

CON CLUS I0  N S 

This  article introduces a new approach which uti- 
lizes a feed forward neural network technique to  
model fabric permeability characteristics as  a 
function of temperature and pressure drop when 
the fabric is under biaxial tension conditions. The  
proposed neural network model is conceptually 
simple, but its predictions were very good: well 
within reasonable error limits considering the 
complexities involved. The  proposed model was 
capable of handling real-world data and does not 
require initial data processing. Further, the pro- 
posed model is extremely fast in both the training 
and test phases. Hence, this model has the poten- 
tial to  be used for on-line simulation of airbag de- 
ployment studies. 

This  work was sponsored by the Chrysler Challenge 
Fund Project No. 2002570 and State of Texas, ATP 
Project No. 003644-012. The  authors are also indebted 
to Mr. John  Sollars from the design center a t  Milliken 
& Company for furnishing the  test samples used in 
this study. 
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